

Baumaterialien für Städte im Klimawandel – ein Materialkatalog mit Empfehlungen

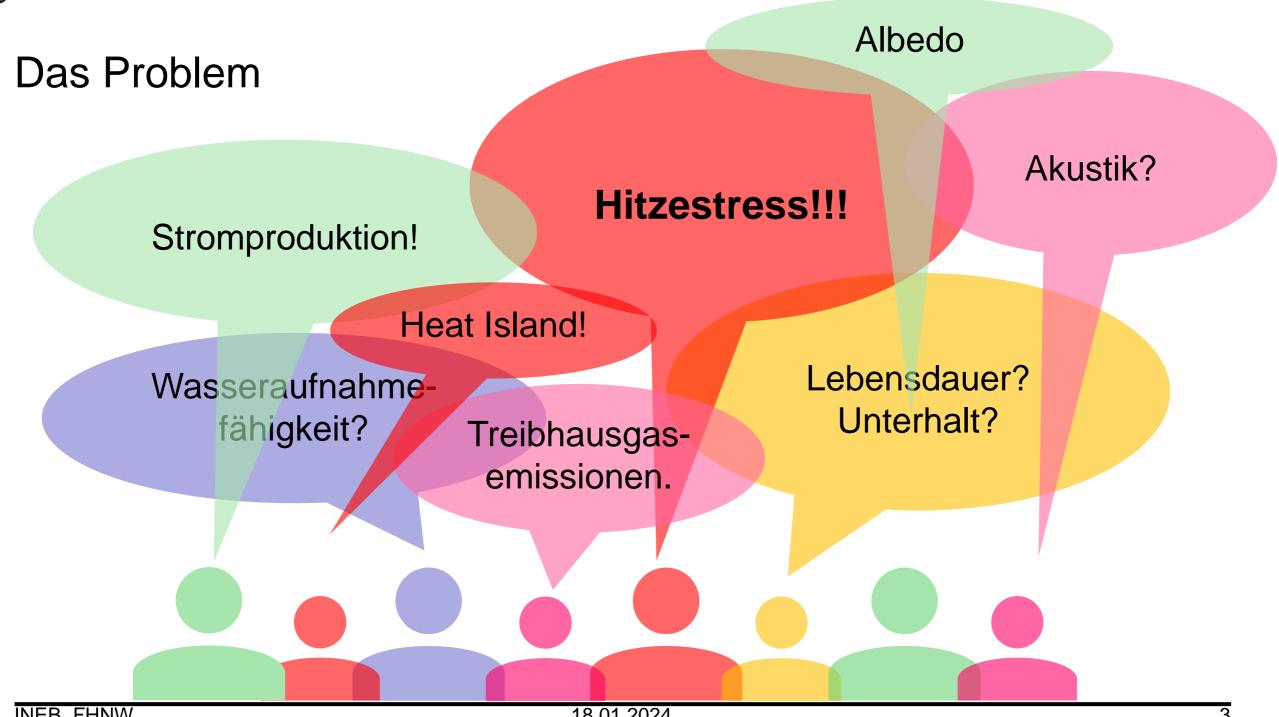
Projektteam:

Dr. Caroline Hoffmann (FHNW)

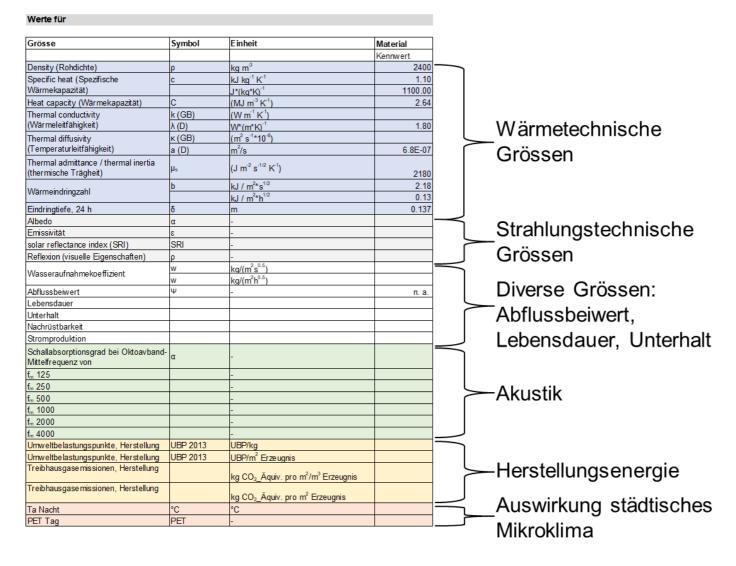
Prof. Dr. Achim Geissler (FHNW)

Miriam Mutti und Dr. Andreas Wicki (damals mcr, Universität Basel)

Franziska Schwager, AUE Basel Stadt


Stand: 18.12.2023

Bausteine «Minderung» Wärmeinseleffekt



INEB, FHNW

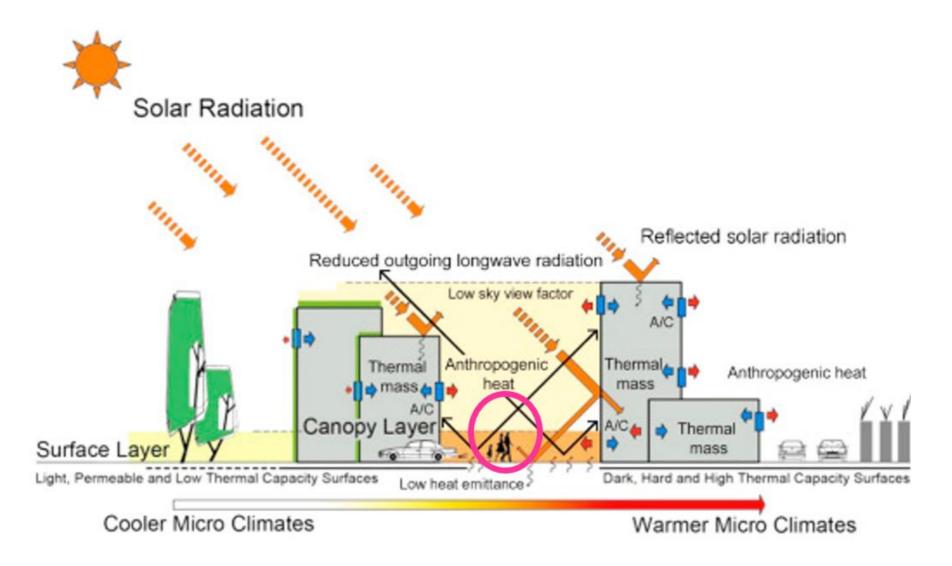
18.01.2024

Materialkatalog mit Empfehlungen

- Neue Elemente:
 Städtisches Mikroklima
 Alle Angaben in einem
 Dokument

Zielgruppe:

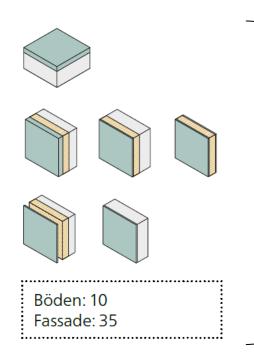
- **Planer**
- Entscheidungsträger


Einsatzphase:

- frühes Planungsstadium
- Quartiersplan, Bebauungsplan

INEB, FHNW 18.01.2024

Mikroklima und Hitzestress



Quelle: A. Soltani and E. Sharifi, "Daily variation of urban heat island effect and its correlations to urban greenery: A case study of Adelaide," Front. Archit. Res., vol. 6, no. 4, pp. 529–538, 2017

Vorgehen...

45 Materialien

Sammlung Daten

Datenbanken / Literatur

Mikroklima:

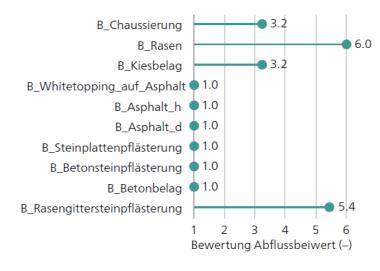
Simulationen dynamische Interaktion zwischen Gebäuden, Böden und der Atmosphäre (ENVI-met 4.4.5)

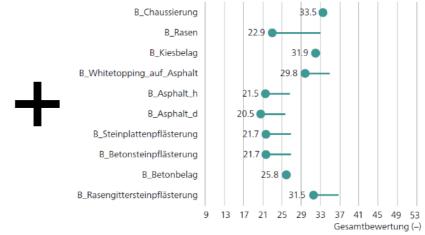
Grösse	Symbol	Einheit	Material
			Kennwert
Density (Rohdichte)	ρ	kg m ³	2400
Specific heat (Spezifische	С	kJ kg ⁻¹ K ⁻¹	1.10
Wärmekapazität)		J*(kg*K) ⁻¹	1100.00
Heat capacity (Wärmekapazität)	С	(MJ m ⁻³ K ⁻¹)	2.64
Thermal conductivity	k (GB)	(W m ⁻¹ K ⁻¹)	
(Wärmeleitfähigkeit)	λ (D)	W*(m*K) ⁻¹	1.80
Thermal diffusivity	κ (GB)	(m ² s ⁻¹ *10 ⁻⁶)	
(Temperaturleitfähigkeit)	a (D)	m²/s	6.8E-07
Thermal admittance / thermal inertia (thermische Trägheit)	μ _s	(J m ⁻² s ^{-1/2} K ⁻¹)	2180
MAY la dela bil	b	kJ / m ² *s ^{1/2}	2.18
Wärmeindringzahl		kJ / m ² *h ^{1/2}	0.13
Eindringtiefe, 24 h	δ	m	0.137
Albedo	α		
Emissivität	ε	-	
solar reflectance index (SRI)	SRI	-	
Reflexion (visuelle Eigenschaften)	ρ	-	
Wasseraufnahmekoeffizient	w	kg/(m ² s ^{0.5})	
	w	kg/(m ² h ^{0.5})	
Abflussbeiwert	Ψ	-	n. a.
Lebensdauer			
Unterhalt			
Nachrüstbarkeit			
Stromproduktion			
Schallabsorptionsgrad bei Oktoavband- Mittelfrequenz von	α	-	
f _m 125			
f _m 250			
f _m 500			
f _m 1000			
f _m 2000		-	
f _m 4000		-	
Umweltbelastungspunkte, Herstellung	UBP 2013	UBP/kg	
Umweltbelastungspunkte, Herstellung	UBP 2013	UBP/m ² Erzeugnis	
Treibhausgasemissionen, Herstellung		kg CO ₂ _Äquiv. pro m²/m³ Erzeugnis	
Treibhausgasemissionen, Herstellung		kg CO ₂ _Āquiv. pro m² Erzeugnis	
Ta Nacht	°C	°C	
PET Tag	PET	-	

INEB, FHNW

18.01.2024

...Vorgehen


Fokussieren


Bewertung und Vergleich Materialien untereinander

Bezug auf Parameter

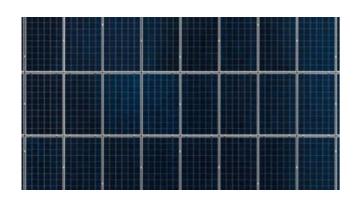
Bezug Materialien untereinander

- Städtisches Mikroklima
- Blendung, Albedo
- Versickerungsfähigkeit (Böden)
- Nachhaltigkeit
- Akustik

Anwendungsbeispiele

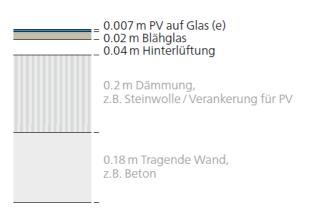
Quelle: Divers

INEB, FHNW 18.01.2024

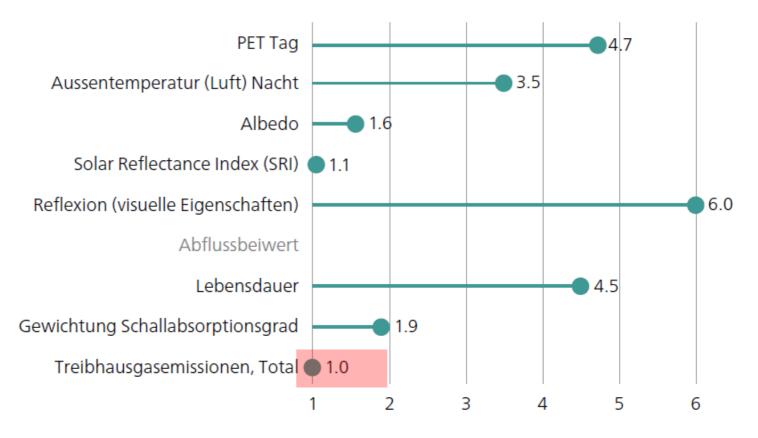

Beispiel 1: Suche bestes Wandmaterial städtisches Mikroklima

Materialdatensammlung sortiert nach l	PET tagsüber	Aussentemperatur		Solar Reflectance	Reflexion (visuelle		Bewertung Schall-	Treibhausgas-
	PET Tag	(Luft) Nacht	Albedo	Index (SRI)	Eigenschaften)	Lebensdauer	absorptionsgrad	emissionen, Total
Wandkonstruktionen		°C	_	_	_	Jahre	_	kg CO ₂ _Äquiv. pro m² Erzeugnis
LB_Glasfassade_Sonnenschutz_d	Sortiert	21.6	0.08	0	0.10	25	n. vorhanden	57
LB_Sandwichpaneel_d	nach	21.8	0.08	0	0.10	n. vorhanden	2.4	53
HF_Metallblechverkleidung_d	nach	21.8	0.08	0	0.10	50	n. vorhanden	20
HF_Photovoltaik	PET	21.7	0.16	1	0.09	35	1.9	357
HF_Faserzementverkleidung	' - '	21.9	0.63	63	0.30	50	3.2	17
ZW_Zweischalenmauerwerk_ Kerndämmung	33.1	21.7	0.55	64	0.13	50	1.9	61
LB_Glasfassade	33.6	21.4	0.31	n. vorhanden	0.15	30	1.9	110
Reflektierender_Anstrich_d		21.7	0.42	50	0.25	n. vorhanden	1.7	n. vorhanden
LB_Glasfassade_Sonnenschutz_h	33.8	21.6	0.68	81	0.80	25	n. vorhanden	57
HF_Faserzementverkleidung_d		22.0	0.26	35	0.25	50	3.2	17
HF_Steinverkleidung	34.1	21.8	0.28	23	0.23	50	1.7	n. vorhanden
HF_Holzverkleidung	34.2	21.7	0.35	38	0.30	30	5.1	1
HF_Faserzementverkleidung_m	34.2	21.9	0.45	53	0.50	50	3.2	17
HF_Metallblechverkleidung_h	34.4	21.7	0.68	81	0.80	50	n. vorhanden	20
HF_Faserzementverkleidung_h	34.4	21.8	0.75	86	0.70	50	3.2	17
LB_Sandwichpaneel_h	34.5	21.7	0.68	81	0.80	n. vorhanden	2.4	53
Reflektierender_Anstrich_m	34.6	21.7	0.69	83	0.50	n. vorhanden	1.7	n. vorhanden
VA_Kompaktfassade_EPS_h	34.8	21.7	0.75	86	0.70	30	1.0	29
ZW_Zweischalenmauerwerk_Luftschicht_h	35.0	21.6	0.75	86	0.70	45	1.7	35

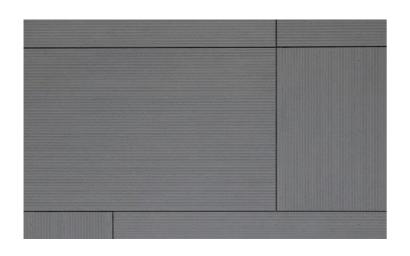
[...]



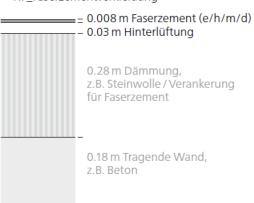
...günstige Wandmaterialien: hinterlüftete PV


PV (hinterlüftet, Dämmung Steinwolle)

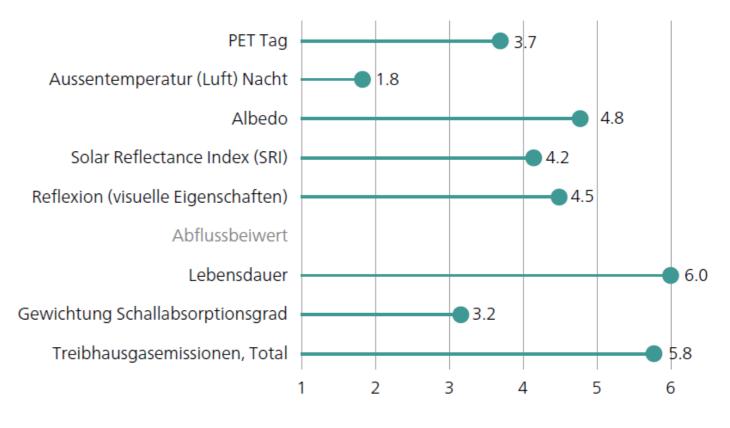
→ HF_Photovoltaik


Bewertung

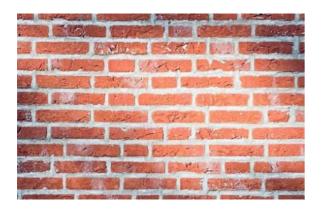
PV/Glas



... günstige Wandmaterialien: hinterlüftete Faserzementplatten

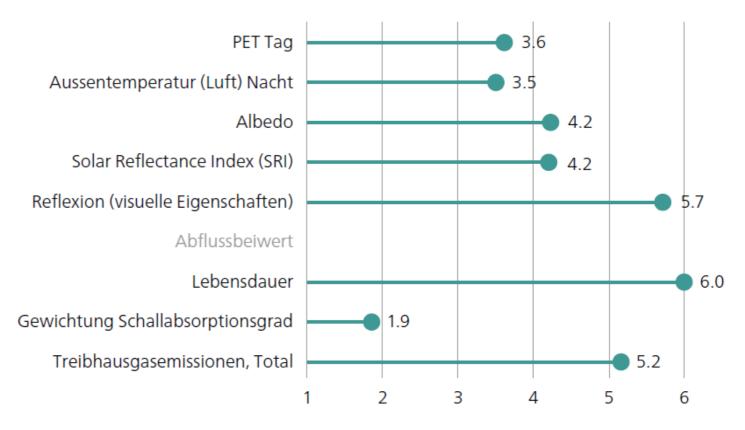

${\it Faserzement verkleidung, Eternit}$

→ HF_Faserzementverkleidung


Bewertung

Faserzement

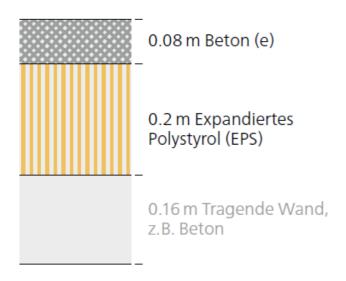
... günstige Wandmaterialien: Zweischaliges Mauerwerk


Zweischalenmauerwerk mit Kerndämmung, Sichtbackstein aussen

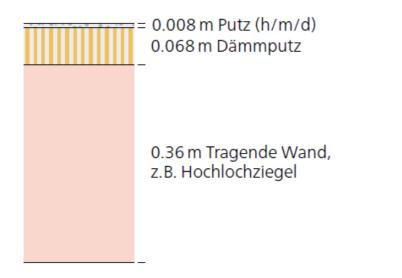
→ ZW_Zweischalenmauerwerk_ Kerndämmung

Bewertung

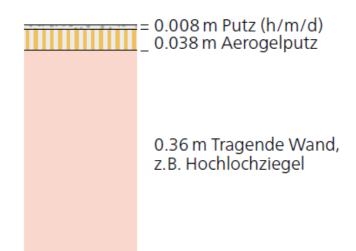
Sichtbackstein



... ungünstige Wandmaterialien


Sichtbetonwand mit Kerndämmung

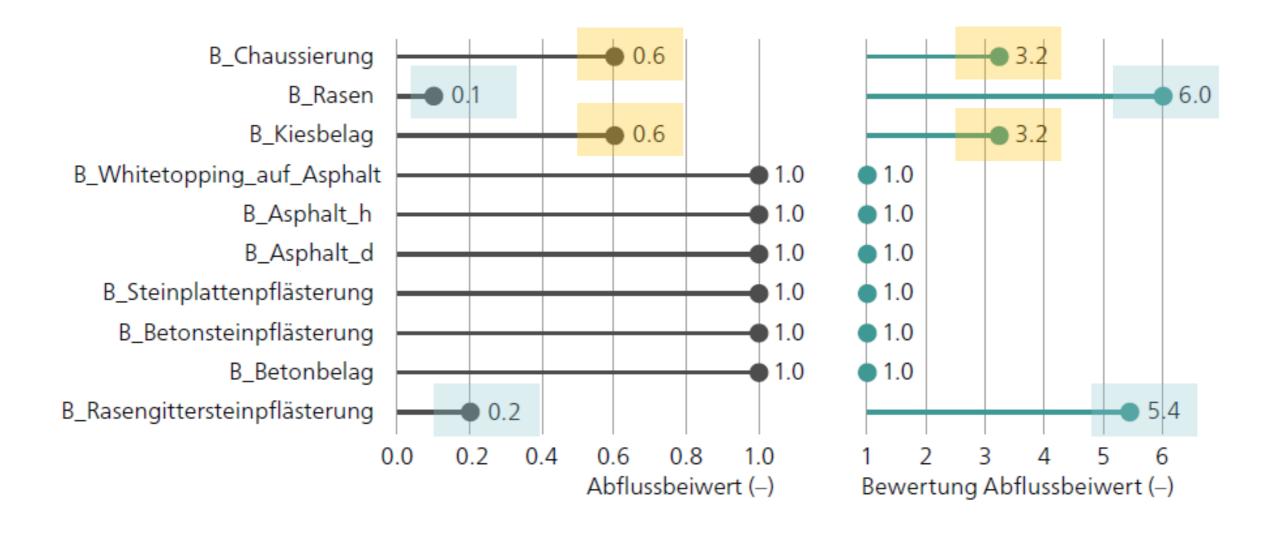
→ ZW_Sichtbetonwand_ Kerndämmung


Einschalenbacksteinmauerwerk mit 7 cm Dämmputz

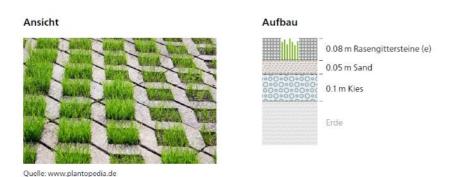
→ VA_Einschalenbacksteinmauerwerk_Dämmputz

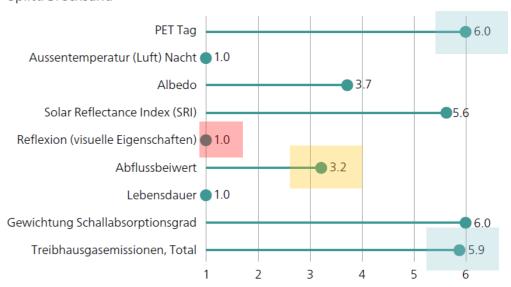
Einschalenbacksteinmauerwerk mit 4 cm Aerogeldämmputz

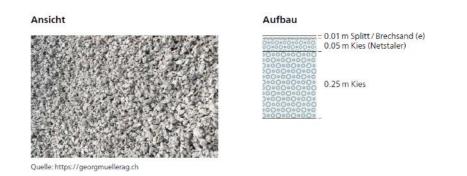
→ VA_Einschalenbacksteinmauerwerk_Aerogeldämmputz


Beispiel 2: Suche Böden für das Konzept «Schwammstadt»

Siedlung «Im Park» Ittingen, Quelle: Stefan Hasler, VSA


Abflussbeiwert von Böden




Auswahl Böden mit tiefem Abflussbeiwert...

Rasengitterstein PET Tag Aussentemperatur (Luft) Nacht Albedo Solar Reflectance Index (SRI) Reflexion (visuelle Eigenschaften) Abflussbeiwert Lebensdauer Gewichtung Schallabsorptionsgrad Treibhausgasemissionen, Total 1 2 3 4 5 6

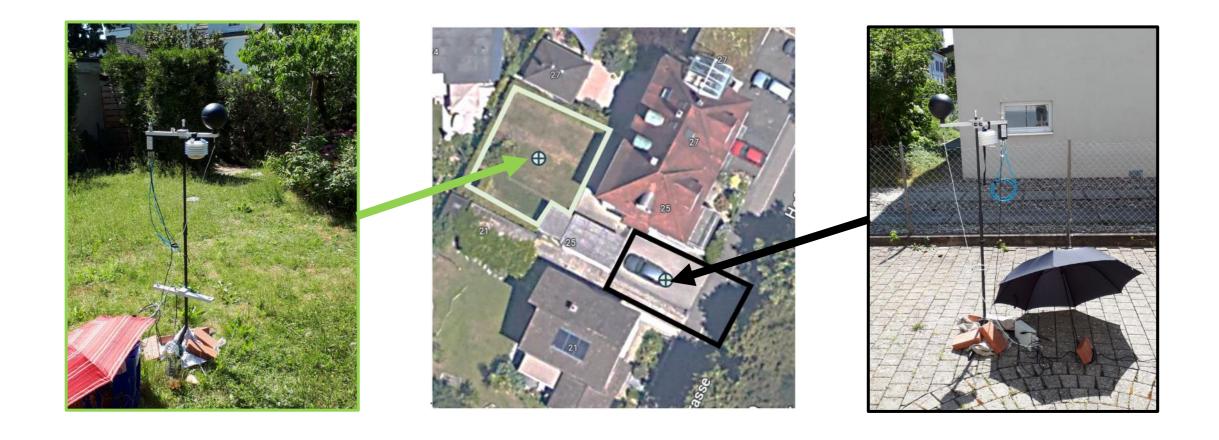
BewertungSplitt/Brechsand

Was kann man tun?

- Eher helle Materialien verwenden (Zielkonflikt Blendung!).
- Hinterlüftete Konstruktionen einsetzen (könnte auch für Sanierungen interessant sein).
- Bei Böden auf Versickerungsfähigkeit achten.
- Bei grüner Infrastruktur an die Verschattung (Bäume) und ein Bewässerungskonzept denken.

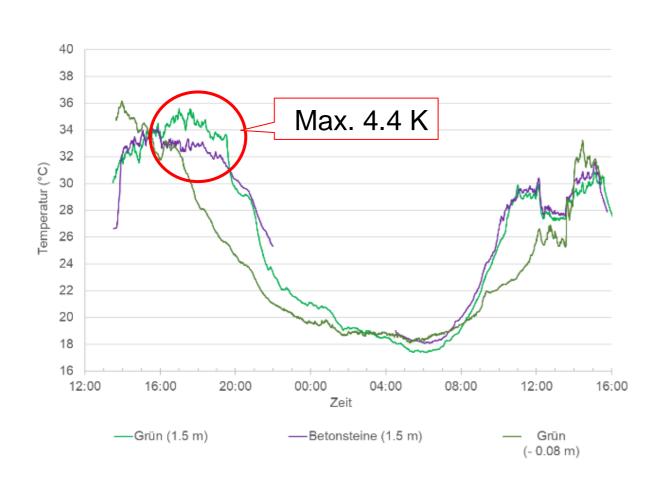
Quellen: oben: Aeschlimann AG, unten: Stadtgärtnerei Basel, Erlenmattpark

Ausblick: Erweiterung Materialkatalog


Derzeit läuft ein vom BFE und vom BWO finanziertes Projekt zur Erweiterung

- Dachmaterialien
- Dachbegrünungen
- Grünflächen trocken / bewässert, mit / ohne Beschattung

Quelle: Bundesverband GebäudeGrün e. V.



Einblick: Messung Grünfläche und Hartbelag, Sommer 2023

...erste Ergebnisse

Grünflächen immer mit

25.-26.06.2023

Download:

https://www.bwo.admin.ch/bwo/de/home/wie-wir-wohnen/umwelt/publikationen-bwo/baumaterialien.html

Dank

Ein Projekt im Rahmen des Pilotprogramms Anpassung an den Klimawandel, unterstützt durch das Bundesamt für Bundesamt für Wohnungswesen BWO und das Amt für Umwelt und Energie des Kantons Basel-Stadt

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Projektpartner:

wohnen&mehr, Basel

Projektteam:

Dr. Caroline Hoffmann, Prof. Dr. Achim Geissler (FHNW)

Miriam Mutti und Dr. Andreas Wicki (damals Atmospheric Sciences, Meteorology, Climatology and Remote Sensing (mcr), Universität Basel)

Dr. Christian Feigenwinter (mcr), Universität Basel

Franziska Schwager, AUE Basel Stadt